
Conrad Weisert,
Information Disciplines, Inc.
www.idinews.com

For Chicago C++ Users'
Group September 27, 2016

cweisert@acm.org

C++ (C# & Java, too)
concrete objects and

essential application data

Agenda
Background: C and its successors

The problem
Why do we care?

Elementary data items
1. Text data
2. Numeric data
3. Discrete data

Looking ahead;
Composite data;
Further discussions

+ bonus topic,
 if time permits

Background
The original C language (c. 1979) lacked
(why?) built-in data types for:

a. text (character-string) data items
b. decimal numeric data items
c. independent discrete data items

But applications (esp. business/commercial) need to
store and manipulate such data items.
COBOL, PL/I, and other older programming
languages supported decimal and text data
as built-in types.
 Was that a good idea? Is there a better way?

What could be
done about that?

a. Within the original C language?
clumsy, extremely error-prone standard library for
quasi-string handling (arrays of char with null
terminator)
 strcpy(s1,s2), etc.
Often a separate statement for each operation, like
assembly language programming.

Another opinion (What was he thinking?)!
"One of the great strengths of C from its earliest days has
been its ability to manipulate sequences of characters."
 -- P. J. Plauger, C/C++ Users Journal, July, 1995

no standard decimal facility; just do your own scaling,
as we did on early binary computers.

Forget it!

C++ Users' Group 1-4 copyright 2016 Conrad Weisert

What could be
done about that?

b. With object-oriented languages
(C++, Java, C#) derived from C?

Early realization that the facilities for defining O.O
classes could also be used to define string and
decimal types.

Therefore, major breakthrough! We don't need to
build those types into the language. Just provide
library classes.
(But that took a while and still isn't fully satisfactory.)

The trap
The existence of string and decimal
library classes misled naive programmers

They assumed that their data items declared as
instances of those classes) were object oriented.

Wrong! Those string and decimal classes
were just substitutes for primitive types that are built
into other programming languages. They do not
support the properties of most application data.

Data items that are just instances of those classes
lack the automated power and error protection that
we associate with the benefits of OOT.

 Let's look at some examples . . .

Quick review of
language-specific facilities

for defining operators on objects
C++: To define the behavior of a binary operator on
one or both objects of a class T either:

A. as a member function (left side implied; the object.)
 T operator*(const T rs) const

B. or as a non-member function (both operands
explicitly declared):
 T operator*(const T ls, const T rs)

They do the same thing, invoked by
 . . . obj1 * obj2 . .
 in an expression
 When would you prefer each of those?

language-specific facilities
for defining operators on objects

C++ (continued): For efficiency it is strongly
recommended that we:

Define the compound-assignment operator as
primitive:
 T& operator*=(const T rs)
Define the simple arithmetic operator in terms
of the corresponding compound assignment
operator:
 T operator*(const T ls, const T rs)
 {T result = ls;
 return ls *= rs;

 } Why is this recommended?

C++ Users' Group 5-8 copyright 2016 Conrad Weisert

language-specific facilities
for defining operators on objects

C#: You can't define the compound assignment
operators, just the simple ones:

But users can still use the compound assigment
operators. We hope the compiler figures out how to
avoid creating a new object for *=

Java: Hopeless!
You can't overload operators or use ordinary
expression syntax for your own classes! You have to
define named functions, so the user codes
 . . obj1.multiply(obj2) . .
in an expression.
Such code is hard to read, but usually better than
not defining objects at all.

Why doesn't Java support
operator overloading?

Java doesn't support value objects.
https://en.wikipedia.org/wiki/Value_object

Strange notions about readability:
". . . The language designers decided (after much debate) that
overloaded operators were a neat idea, but the code that relied
on them became hard to read and understand."—David
Flanagan: Java in a Nutshell, 1996, O'Reilly & Associates, p. 35.

"One of the major problems with operator overloading is that it
gives the programmer the power to easily write code that is
difficult to read."—Paul Tyma, Gabriel Torok, and Troy Downing:
Java Primer Plus, 1996, Waite Group Press, p. 254

Part 1 (of 3) Text
(or string) data items
The standard string classes
 in C++, Java, and C#
Examples:

1. short fixed-length identifiers
2. names of people
3. book titles

 Other necessary string classes

Standard string classes

C++, Java, and C# all provide a standard
library string class:
The good:

Natural expression syntax for manipulating data
The usual (expected) operators and functions
Huge maximum length

 Good start, but is it sufficient?
The bad: (complicating programming)

No fixed-length objects
No contiguous objects within a containing structure.
Separate incompatible format & style for
(Java) stringBuffer.

C++ Users' Group 9-12 copyright 2016 Conrad Weisert

Text example 1:
fixed-length identifiers

Many data items used as identifiers (SSN, ISBN,
UPC, AcctNo, etc.):

have either fixed length or
varying length with a small maximum
may contain digits, letters, and some punctuation

Declaring them instances of string is extremely
inefficient and complicates programming:

non-contiguous storage complicates and slows
I-O, comparisons, parameter passing, etc.
may accept illegal characters, absurd length, etc.
unnecessary length field wastes space

 What can we do instead in C++?

A C++ Solution:
Fixed-length strings can occupy contiguous
storage within a containing structure.
 class Book {
 Cstring<14> ISBN;
 .
 .

So when we (shallow) move or copy a Book
object, the ISBN moves right along with it.
 What's a Cstring? (more later)

Fixed-length
contiguous strings

C++'s class template facility allows us to
define a constant-length string class in which:

The string value is stored inside the containing
structure, i.e. within a containing record.
There are no pointers to non-contiguous memory.

That simplifies programming and yields efficient code.

Downside: Compiler may generate near-duplicate
code if you define multiple Cstring classes.

i.e. Cstring<8> is a separate class from
 Cstring<10>!

Text example 2:
Names of people (international style)

One of the most frequently needed data items
in business applications.
A common textbook solution uses three
strings!

 string last;
string first;
string middle;

or
string[3] name;

What's wrong with that?

C++ Users' Group 13-16 copyright 2016 Conrad Weisert

Text example 2:
Names of people (continued)

Common textbook solution uses three strings!
 string last;

string first; or string[3] name;
string middle;

Each component
occupies non-contiguous storage pointed to from a
containing record
can be between 0 and 65535 (wow!) characters!
carries a length field (2 bytes? 4 bytes?)

Can we tell George Herbert Walker Bush and
Cher to change their names?
What if we need to store a Chinese name?
 Sun Yat-sen, Mao Zedong

One better solution:
(There are others)

Single string with comma following family
name: <familyname>,<given names>
No other restrictions on punctuation

Examples: Bush,George Herbert Walker
 De Gaulle,Charles

Mao,Zedong

Need to specify maximum size for the whole name

 (why? how big?)
 Advantages?
 Disadvantages?

One better solution:
(continued)Advantages:

Easy to sort and compare
Easy to reformat for polite envelope address, etc.
 George Herbert Walker Bush
Much less wasted storage than multiple strings.
Accommodates non-European-style names, as long as
there's a family name having no embedded comma
Allows hyphens and other punctuation (except comma)
within any component.
Flexible length of each component. Max. size applies to
whole name, not to each component.

Disadvantage:
Still non-contiguous with containing record
 (Are we stuck with that awkwardness?)

Text example 3: Book
(or other literary or performed work) title

Why do we need a standard?

Why not just use:
what the publisher provides?
whatever is printed on the cover?

C++ Users' Group 17-20 copyright 2016 Conrad Weisert

Problems with titles

Where would you expect to find in a sorted
catalog:

"The Decline and Fall of the Roman Empire"
"Das Kapital"?
"A Tale of Two Cities"?
"La Traviata"?

For most purposes that list is already sorted
(assuming that's the external representation)!
What's the absolute simplest
 acceptable standard?

a. Move the prefix article to the end, with a
separator character that never appears
within a title:
 title = "Tale of Two Cities^A";

b. Or use two strings:
titlePfx ="The";
titleBody
 ="Decline and Fall of the Roman Empire";

c. Again we must specify a maximum length.
 Any other good ideas?

Possible solutions for the
internal representation of titles

Summary: Classes
for text data items:

Do we need more than string?
string is a relatively recent addition to the
C++ standard class library (and thus to the
language)

huge maximum size
non-contiguous memory
Java and C# emulated it, more or less

What else could anyone possibly need?
Doesn't that serve any conceivable
requirement?

Shocking discovery
in programs we've examined

Many data items declared simply as instances
of string shouldn't be!

They should be instances of a specific class
in order to enforce:

maximum (& minimum) length
formatting and editing rules
conversion rules
sorting sequence
default value, if any

Those classes can use standard string
 internally when it's appropriate.

C++ Users' Group 21-24 copyright 2016 Conrad Weisert

So, which data items are
OK to declare as raw string?

General text
No definite format or structure
Wide range of size

Examples:
articles,
messages,
book chapters,
contracts,
laws,
correspondence,
 . . .)

But not most
names, titles,
identifiers, etc.

Our (IDI) string classes
Earlier (before std. string) we implemented
four string classes, which we still find useful
for localizing common kinds of processing:
Dstring: Dynamic

like what became the standard library string class.

Fstring: Fixed length
truncate if too long, pad if too short

Vstring: Varying length
up to a maximum like PL/I varying
Avoids re-allocation upon += (non const)

Cstring: Constant length
contiguous with containing struct (mostly short)

Not only usefulbut needed!

Can we get those
four string classes?

Sure but not immediately:
We're revising the C++ version to substitute standard
library string for our original Dstring
That's easy but the other three classes all interact
with Dstring, so they have to be changed and
thoroughly tested, too.

When time permits, we'll do the same for the
C# equivalents.

If you're interested, contact me at
 cweisert@acm.org
 (773) 736-9661

Part 2 of 3
Numeric data items
Issues with decimal scaling
Do application programs really need internal
(member) decimal? If so, why?

Examples:
Money
Date
Angle
 . . .

C++ Users' Group 25-28 copyright 2016 Conrad Weisert

Built-in decimal (history)
Packed decimal format (2 digits/byte, 1963)
Started with COBOL (IBM extension)
. .PICTURE . . USAGE IS COMPUTATIONAL-3

Supported by PL/I . . . FIXED DECIMAL(m,n)

Not needed in object-oriented languages
Integers of various sizes are built-in.
Java, C#, and proposals for C++ provide "standard"
numeric decimal library classes

Not compatible with packed decimal format
 (still found in old files)
C# decimal is a pair of long (128 bits!)

Slower than binary on most computers,
 but may avoid scaling issues.

Properties of Numeric Data
Do we ever need (or prefer) only internal
decimal for concrete data items that have:

a unit of measure (internal),
a specified range (min & max),
and a definite precision (or accuracy)?

If so, for what? and why?
Money?
Distance?
Temperature?
Elapsed time?
Time of day?
Weight?
Date?

Answer: Hardly ever!
 (But we'll keep it in mind as an option.)

Some arithmetic operations are needed and others are
 illegal nonsense. (We showed those design patterns 4 years ago.)

The argument
for internal decimal

Except for negative powers of 2 (1/2, 1/16, etc.)
fractional quantities, such as 1/10, are
non-terminating in binary representation.

Careless programmer may generate $44.99999999,
unacceptable to end users and fussy auditors.

Let's look first at amounts of money, since
money has received considerable attention
(and misinformation) in articles, textbooks, courses,
and even language design.

Standard library
decimal classes

Standard library classes
C++ Proposal to add Decimal classes
decimal32, decimal64, decimal128
 (See next page)

Java BigDecimal class
 (Precludes ordinary expression syntax in computations)

C# a decimal item consumes 16 bytes!
 (This is a .Net standard representation)

NOTE: None of those is compatible with IBM 360
packed decimal (2 digits per byte), common in old files.

 So, when do we need them?

C++ Users' Group 29-32 copyright 2016 Conrad Weisert

"Proposal to Add Decimal
Floating Point Support to C++"

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3407.html

"In many areas, especially in finance, exact values need to be
processed and the inputs are commonly decimal. Unfortunately,
decimal values cannot, in general, be represented accurately using
binary floating points even when the decimal values only uses a few
digits. Instead, the values become an approximation. As long as the
values are carefully processed the original decimal value can be
restored from a binary floating point (assuming reasonable
restrictions on the number of decimal digits). However, computations
and certain conversions introduce subtle errors (e.g. double to float
and back to double, even if float is big enough to restore the original
decimal value). As a result, the processing of exact decimal values
using binary floating points is very error prone."
Wrong! Binary arithmetic is perfectly accurate with
 integer scaling. Just pick the right units!

The counter argument
But avoiding such cases is easy and natural
without internal decimal

Define a Money class (or USMoney, etc.)
Just represent the object in integer cents
(or whatever the finest increment will be)
Apply scaling at input time and output (display) time
Addition and subtraction of such money items work
fine in a natural way.
So does multiplication or division by a pure number,
e.g. a percentage or quantity calculation.
That was easy (and commonly done 50 years ago)
without OOP. It's even easier with OOP.

 Why wouldn't we do that?

Popular mythology
and a C# "solution"

From the stackoverflow web site:
http://stackoverflow.com/questions/316727/
is-a-double-really-unsuitable-for-money

This question was posed:
"I always tell in c# a variable of type double is not
suitable for money. All weird things could happen. But I
can't seem to create an example to demonstrate some of
these issues. Can anyone provide such an example?"

 What were some of the interesting replies?

Some early replies
1. "Very, very unsuitable. Use decimal.

double x = 3.65, y = 0.05, z = 3.7;
Console.WriteLine((x + y) == z); // false "

2. "You will get odd errors effectively caused by rounding. In
addition, comparisons with exact values are extremely tricky -
you usually need to apply some sort of epsilon to check for
the actual value being "near" a particular one.
Here's a concrete example:

class Test
{ static void Main()
 { double x = 0.1;
 double y = x + x + x;
 Console.WriteLine(y == 0.3); // Prints False
 }
} "

 What was the real problem here?

C++ Users' Group 33-36 copyright 2016 Conrad Weisert

And some utter confusion
3. "Yes it's unsuitable.

If I remember correctly double has about 17 significant numbers, so
normally rounding errors will take place far behind the decimal point.
Most financial software uses 4 decimals behind the decimal point,
that leaves 13 decimals to work with so the maximum number you
can work with for single operations is still very much higher than the
USA national debt. But rounding errors will add up over time. If your
software runs for a long time you'll eventually start losing cents.
Certain operations will make this worse. For example adding large
amounts to small amounts will cause a significant loss of precision.
You need fixed point datatypes for money operations, most people
don't mind if you lose a cent here and there but accountants aren't like
most people."

Finally: a few
sane clarifications

4. "Depending on where you live, using 64 bit integers to represent
cents or pennies or kopeks or whatever is the smallest unit in your
country will usually work just fine. For example, 64 bit signed
integers representing cents can represent values up to 92,223 trillion
dollars. 32 bit integers are usually unsuitable."

5. "My understanding is that most financial systems express currency
using integers -- i.e., counting everything in cents. IEEE double
precision actually can represent all integers exactly in the range
-2^53 through +2^53. (Hacker's Delight, pg. 262) If you use only
addition, subtraction and multiplication, and keep everything to
integers within this range then you should see no loss of precision."

Why not division?

And the last word?

6. "Actually floating-point double is perfectly well suited to representing
amounts of money as long as you pick a suitable unit.

See http://www.idinews.com/moneyRep.html

So is fixed-point long. Either consumes 8 bytes, surely preferable to the 16
consumed by a decimal item." – Conrad Weisert, June 8, 2015

 But with a final dissent!
"Linking an article you wrote that disagrees with decades of common
practices and expert options that floating-point is unsuitable for financial
transaction representations is going to have to have a little more backup
than a single page."

– MuertoExcobito June 8 , 2015 at 15:42

 No further discussion has been
 posted after a year!

Money Conclusion
The issue wasn't whether floating point is
"suitable" for representing money.

The issue was simply the choice of unit for
the internal representation.
Either double or long works just fine for
representing integer pennies (or whatever the
smallest unit is),
and either of them also

consumes much less space (half) than the popular
decimal class objects
yields fast computation on most computer
architectures.

C++ Users' Group 37-40 copyright 2016 Conrad Weisert

So what good are those
standard library

decimal classes?
So far, organizations I've worked with have
found no use for them in representing
application data in ordinary business or
scientific applications.

They may be useful in theoretical
 number-theory research studies.

Anything else?

Numeric example 2: Date
C++, Java, & C# provide standard Date classes.

Some combined with TimeOfDay
(Is that a good idea?)
Some impose weird representation conventions
(e.g. January is month 0, 2000 was year 100)
and amateurish function names
(Date is both the day-of-month function
 and the class name!)
Few provide necessary operations
 (Which ones are necessary?)

Don't even think about using those ugly
 standard library classes in a serious program.

Operations on standard (C++)
library Date (common confusion)

Q1: What's the result of adding one date to
 another date?

I own two textbooks that define overloaded + for
two Dates yielding a Date result!
So what Date is
 July 4, 1776 + September 7, 1941 ?

Q2: What's the result of subtracting one
 date from another date?

Standard Date classes don't support this operation, which
should yield a Duration (no. of days).
So what is
 January 1, 2017 - December 25, 2016 ?

Operations on standard
library Date (continued)

Q3: How does a program compare two Dates?
d1 < d2 is not supported!
 (needed by library sort routines)
neither is d1.lessThan(d2)
use d1.before(d2)! (Java)
 (not used anywhere else.
 Undermines generic programming)

How did that happen?
What should a programmer do?

C++ Users' Group 41-44 copyright 2016 Conrad Weisert

Conclusion for Dates
Applications need a pair of related
interacting classes:

Date (point-in-time) (See note below)
Days (extent-of-time or duration)

Date range must span the Gregorian (or an
alternative) calendar and beyond.
See http://www.idinews.com/NoDate.html
for more details.
Note: Whether to combine date and time of day in a
single value is controversial (and messy) and depends
upon the application. We needn't discuss it here.

Numeric example 3: Angle
Angle follows the same pattern as Money,
Weight, ElapsedTime, except for one minor
issue.

It's the additive design pattern, but the result of
any operation must be between -pi and +pi

Q: Why would a programmer using a language
that supports OOP choose not to use an Angle
class for any application that deals with plane
angles?

Why don't C++, Java, and C# standard libraries,
which already provide all the trigonometric
functions, provide those classes?

 Anti-OOP libraries

The three C-like languages provide the usual
trigonometric fuctions as library routines, but
no standard class to define the angles
themselves!

It's as if they wanted to discourage the use of the
object paradigm.
Java is (as expected) the worst or the three, because
it doesn't support expression syntax for objects.
That's like coding in Fortran.

Part 3 of 3
Discrete data items

Definition
Small examples:
Large examples:

C++ Users' Group 45-48 copyright 2016 Conrad Weisert

Discrete (or coded) data items
Possible values:

May be a small stable list (maritalStatus)
or a large (even unlimited) frequently changing
one (telephoneNumber),

Never enter into arithmetic calculations,

But some may be compared for sequence
(with the relational operators) or sorted in lists,

Some may be used as identifiers
(Part 1 of this presentation), usually internally
string or Cstring.

Two broad categories:

Small number of possible values:
sex (or gender) of a person or animal
maritalStatus
color of a product

Large number of possible values:
telephoneNumber
postalCode (ZIP)
employeeNumber

We never do arithmetic on them, but we
may sort them.

"Number" in the data name doesn't make it a numeric item. What would?

Why bother with
discrete item classes?

Assures compliance with standard forms:
Is the customer's phone number
(202) 393-1200?
 202 393-1200?
 202 3931200?
(202) EXecutive-3 1200?
(202) EX3-1200?

Why do we care?
Can we produce a sorted list?
Will we avoid errors? 202 393120
Can we avoid mischievous input
 (919) 393-1200?

An obvious construct for
small number of values
that don't change often

 maritalStatus is a good example
unknown
single
married
divorced
widowed

The enum type is obvious for internal
representation.

C++ Users' Group 49-52 copyright 2016 Conrad Weisert

Conclusions

Summary questions
Q1: The O.O. languages support primitive
(non-O.O., built-in, inherited from C) data. Is it
wrong to declare application data items as
instances of those primitive types?

Q2: What about instances of string and
decimal?

Q3: What about Java? Manipulating
primitive data versus objects is almost two
separate languages, and expression syntax
is ugly.

I hope you're convinced that
with object-oriented technology:
Every numeric data item that has a specified:

unit of measure,
range,
precision

and every text data item that identifies
(or helps to identify) an object
and every discrete data item that gives the
value of an option property

should be an instance of a well-defined
error-free, simple, and flexible class.

Looking ahead:
For another session?

Tonight we've focused on elementary (text,
numeric, & discrete) data items and we've
drawn useful conclusions.

What about composite data (entities,
records, structures). Which principles that
we just discussed apply to them, too, and
how? In particular:

The notorious Person class

What about container classes?
(Java calls them "collections")

C++ Users' Group 53-56 copyright 2016 Conrad Weisert

BONUS TOPIC
(optional)

I've been asked to show again the electric
circuits example that we examined three
years ago:

It illustrates the power of OOP in simulating
real-world systems.

It will take about six minutes

Those who aren't interested are free to leave
now, without hurting the speaker's feelings.

Direct Current Electrical
Quantities

Some types (classes) required:

Some operations:
 power = voltage * current
 voltage = current * resistance

Data type Unit of measure
Potential Volts
Current Amperes
Power Watts
Resistance Ohms

Defining the
required operators

Ohm's law, V = I * R
 demands 4 operator definitions for

 V = I * R
 V = R * I
 I = V / R
 R = V / I

So does P = I * V
That's awfully tedious to prepare
 Why not just define the ones our own
 program needs?
 Is it worth the bother?

("YAGNI")

A troublesome
operator issue

Electrical engineers often want to combine
the two earlier formulas
 V = I * R and P = I * V
into
 P = I * I * R
What would we need to define to support
that? What problems arise?

No problem if the user-programmer parenthesizes
 P = I * (I * R)
but must we require that?

C++ Users' Group 57-60 copyright 2016 Conrad Weisert

A special operator opportunity

In modeling a circuit we'd like to express
combining resistances both in series and in
parallel.

Series is just addition
 R = R1 + R2
Parallel is
 R = (R1 * R2) / (R1 + R2)

C's bitwise boolean operators suggest a
simpler notation

Series combination: R1 & R2
Parallel combination: R1 | R2
 We can build that. Should we?

A raging controversy
among OOP insiders

Never define any operator to
mean anything other than
what it originally
meant in C

If you do, it will confuse the
reader of a program and impair
readability.

Nonsense! Operator notation
is simple and natural.

There's precedent in standard
C++ Where?

There's no chance of anyone's
misinterpreting
 | or & between
 resistances Why?

Which point of view is more sensible? H

 Code fragment and output #1
 cout << endl << "1: Simple voltage, current, and power" << endl;

 Potential v1 = 115.0; display(v1);
 Current c1 = 15.0; display(c1);
 Power w = v1 * c1; display(w);
 display(w / c1);

 display(w / v1);

1: Simple voltage, current, and power
v1 = 115 volts
c1 = 15 amperes
w = 1725 watts
w / c1 = 115 volts
w / v1 = 15 amperes

What is
display(x)?

 Code fragment and output #2
 cout << endl << "2: Resistances in series and in parallel" << endl;
 Resistance r1 = 6.0; display(r1);
 Resistance r2 = 4.0; display(r2);
 Resistance r3 = r1; display(r3);
 display(r1 & r2);
 display(r1 | r2);
 display(r1 & (r2 | r3));

2: Resistances in series and in parallel
r1 = 6 ohms
r2 = 4 ohms
r3 = 6 ohms
r1 & r2 = 10 ohms
r1 | r2 = 2.4 ohms
r1 & (r2 | r3) = 8.4 ohms

C++ Users' Group 61-64 copyright 2016 Conrad Weisert

 Code fragment and output #3
 cout << endl << "3: More complicated computations" << endl;
 cout << v1 << " across " << r2 << " gives " << v1 / r2 << endl;
 cout << c1 << " through " << r2 << " requires " << c1 * r2
 << " and uses "<< c1 * (c1 * r2) << endl;
 cout << "4 60-watt bulbs use " << 4 * Power(60)
 << " and draw " << Power(60) / v1 * 4
 << " at " << v1 << endl;
 cout << "A " << v1 << ", " << c1 << " circuit can support "
 << int(v1 * c1 / Power(60)) << " 60-watt light bulbs.";

3: More complicated computations
115 volts across 4 ohms gives 28.75 amperes
15 amperes through 4 ohms requires 60 volts and uses 900 watts
4 60-watt bulbs use 240 watts and draw 2.08696 amperes at 115 volts
A 115 volts, 15 amperes circuit can support 28 60-watt light bulbs.

Thank you
 Conrad Weisert

 cweisert@acm.org

 (773) 736-9661

 www.idinews.com
 (usually updated monthly)

 Information Disciplines, Inc.
 4620 N. Austin Avenue
 Chicago 60630

C++ Users' Group 65-68 copyright 2016 Conrad Weisert

