

Compilers and Libraries

Staffan Tjernström

Lead Software Engineer

Eagle Seven Technologies, LLC

stjernstrom@eagleseven.com

https://www.linkedin.com/pub/staffan-tjernstr%C3%B6m/6/595/137

mailto:stjernstrom@eagleseven.com
https://www.linkedin.com/pub/staffan-tjernstr%C3%B6m/6/595/137

Why we care
with apologies to Sir Terrance Pratchett, OBE

Knowledge

Why we care
with apologies to Sir Terrance Pratchett, OBE

Knowledge

= Power

= Energy

= Mass

A computer is just a genteel black hole that knows how to count

Libraries

● Doesn't know how it will be used
● Has to perform as well as possible in all circumstances
● Only allowed very tightly defined side-effects if any
● Very tightly controlled interfaces

These are somewhat contradictory!

The classic example

Thread 1

 while(running)

 {

 int item_count(0);

 for(auto i : *p_map)

 {

 item_count++;

 }

 p_map->erase(item_count - 1);

 }

Occasional SegVio!

Thread 2

 for(int i = 0; i < 1024 * 1024 ; i++)

 {

 my_map[i] = i * 16;

 }

 running = false;

Legalese
/* Copyright (C) 1993-2013 Free Software Foundation, Inc.

 This file is part of the GNU C Library.

 The GNU C Library is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 The GNU C Library is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public

 License along with the GNU C Library; if not, see

 <http://www.gnu.org/licenses/>.

 As a special exception, if you link the code in this file with

 files compiled with a GNU compiler to produce an executable,

 that does not cause the resulting executable to be covered by

 the GNU Lesser General Public License. This exception does not

 however invalidate any other reasons why the executable file

 might be covered by the GNU Lesser General Public License.

 This exception applies to code released by its copyright holders

 in files containing the exception. */

Example Code

#include <stdio.h>

int main()

{

 char const text[] = “Hello Universe”;

 FILE *fp = fopen(“invalid/path/to/file”, “w+”);

 fwrite(text, sizeof(char), sizeof(text), fp);

 fclose(fp);

}

Segmentation Fault!

fwrite

_IO_size_t

_IO_fwrite (buf, size, count, fp)

 const void *buf;

 _IO_size_t size;

 _IO_size_t count;

 _IO_FILE *fp;

{

 _IO_size_t request = size * count;

 _IO_size_t written = 0;

 CHECK_FILE (fp, 0);

 if (request == 0)

 return 0;

 _IO_acquire_lock (fp);

 if (_IO_vtable_offset (fp) != 0 || _IO_fwide (fp, -1) == -1)

 written = _IO_sputn (fp, (const char *) buf, request);

 _IO_release_lock (fp);

 if (written == request || written == EOF)

 return count;

 else

 return written / size;

}

static inline void
__attribute__ ((__always_inline__))
_IO_acquire_lock_fct (_IO_FILE **p)
{
 _IO_FILE *fp = *p;
 if ((fp->_flags & _IO_USER_LOCK) == 0)
 _IO_funlockfile (fp);
}

Multiplatform Considerations

● Different type for same argument
– int vs size_t
– 32 vs 64-bit

● Different fundamental behaviour
– ASIO vs Overlapped
– WaitForMultipleObjects vs parameterized callbacks

Library Contracts

● Users need to be aware of the (lack of)
guarantees libraries offer

● Some guarantees have distinct
performance effects

● Storage limitations

Successful implementations

● CP/M 3 BIOS jump vectors
● glibc
● Boost
● C++ standard library
● Linux syscall()

● Many more

Compilers

● Processors have complex behaviours
● System components no longer equal in

latency
● Target systems not the same as build

systems
● Virtual Targets

Loopy code

extern int elem[64];

int i, sum;
for(i = 63; i; i--)
{

sum = sum + elem[i];
}

1979 version

LDA $elem

STA #00

LDA $0000

LDY $003F

LOOP ADC (#00), Y

DEY

BEQ END

JMP LOOP

END

1979 Behaviour

● Linear complexity up to 255 bytes
● Easy to deduce C from assembler

2014 version

40065e: movl $0x0,-0x8(%rbp)
400665: movl $0x3f,-0x4(%rbp)
40066c: jmp 400681 <main+0x2b>
40066e: mov -0x4(%rbp),%eax
400671: cltq
400673: mov elem(,%rax,4),%eax
40067a: add %eax,-0x8(%rbp)
40067d: subl $0x1,-0x4(%rbp)
400681: cmpl $0x0,-0x4(%rbp)
400685: jne 40066e <main+0x18>

2014 behaviour

● Still possible to deduce C from code
● Not linear behaviour

– Each run takes different amount of time !

Typical 1979 processor

A single Haswell core

2014 version

40065e: movl $0x0,-0x8(%rbp)
400665: movl $0x3f,-0x4(%rbp)
40066c: jmp 400681 <main+0x2b>
40066e: mov -0x4(%rbp),%eax
400671: cltq
400673: mov elem(,%rax,4),%eax
40067a: add %eax,-0x8(%rbp)
40067d: subl $0x1,-0x4(%rbp)
400681: cmpl $0x0,-0x4(%rbp)
400685: jne 40066e <main+0x18>

Loop Carry Dependency

● Address update is done using the result
of a previous loop iteration

● Deprives the out-of-order engine of the
capability to have multiple iterations in-
flight

● Memory loads, instruction latency,
bypass delays cannot be amortized
efficiently.

Everyone is writing parallel programs

Optimzed Straight Line loopiness
 400510: pshufd $0x1b,0x200c47(%rip),%xmm1 # 601160 <elem+0xe0>
 400519: xor %eax,%eax
 40051b: pshufd $0x1b,0x200c4c(%rip),%xmm0 # 601170 <elem+0xf0>
 400524: paddd %xmm1,%xmm0
 400528: pshufd $0x1b,0x200c1f(%rip),%xmm1 # 601150 <elem+0xd0>
 400531: paddd %xmm1,%xmm0
 #
 # pshufd / paddd repeated through elem+0x00
 #
 4005d1: movdqa %xmm1,%xmm2
 4005d5: psrldq $0x8,%xmm2
 4005da: paddd %xmm2,%xmm1
 4005de: movdqa %xmm1,%xmm3
 4005e2: psrldq $0x4,%xmm3
 4005e7: paddd %xmm3,%xmm1
 4005eb: movdqa %xmm1,%xmm4
 4005ef: movd %xmm4,0xc(%rsp)
 4005f5: mov 0xc(%rsp),%edx
 4005f9: add 0x200a8d(%rip),%edx # 60108c <elem+0xc>
 4005ff: add 0x200a83(%rip),%edx # 601088 <elem+0x8>
 400605: add 0x200a79(%rip),%edx # 601084 <elem+0x4>

Store Forwarding

● Use data written earlier without going
through memory or cache

● Data size and alignment in the store and
load must follow restrictive rules

● A store forwarded load must have the same start point as the
 forwarded store.

● The length of the load must be less than or equal to the
length of the store.

● Data from the store must be available by
the time the load starts

Store Forward example

mov [EBP],'helloworld'

mov AL, [EBP] ;not blocked

mov BL, [EBP+1] ;blocked

mov CL, [EBP+2] ;blocked

mov DL, [EBP+3] ;blocked

mov AL, [EBP] ;not blocked, issued
before blocked loads

Suggested Reading

● Intel® 64 and IA-32 Architectures

Optimization Reference Manual
● The Software Optimization Cookbook

We're Hiring!We're Hiring!
http://www.eagleseven.com/candidates.php

http://www.eagleseven.com/candidates.php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

