
TransformationTrait Alias void_t

Document #: WG21 N3911

Date: 2014-02-23

Project: JTC1.22.32 Programming Language C++

Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Discussion 1
3 Proposed wording 3
4 Addendum 3

5 Acknowledgments 4
6 Bibliography 4
7 Document history 5

Abstract

This paper proposes a new TransformationTrait alias, void_t, for the C++ Standard Library. The

trait has previously been described as an implementation detail toward enhanced versions of two

other C++11 standard library components. Its value thus proven, void_t’s standardization has

been requested by several noted C++ library experts, among others.

1 Introduction

We introduced an alias template named void_t in each of two recent papers ([N3843] and [N3909])
that were otherwise independent. While very similar in design and intent, the technical details of
the two versions of void_t differed somewhat from each other in that the latter version had a
more general form than did the former. However, each of those papers treated void_t as merely
an implementation detail en route to a different goal.

After seeing those papers, C++ library experts Stephan T. Lavavej, Howard Hinnant, and
Eric Niebler, among several others, independently commented1 that, even though the alias is
extremely simple to implement, they would nonetheless find it useful to have void_t as a standard
component of the C++ library. This paper therefore proposes to make it so.

We begin with an edited recap of our previous writings on the design, utility, and implementa-
tion of void_t. We then propose wording for its future incorporation into <type_traits>. Finally,
the Addendum recapitulates questions raised on the lib-ext reflector regarding the new trait’s
name.

2 Discussion

2.1 Overview and use case

The purpose of the void_t alias template is simply to map any given sequence of types to a single
type, namely void. Although it seems a trivial transformation, it is nonetheless an exceedingly

Copyright c© 2014 by Walter E. Brown. All rights reserved.
1For example, STL wrote in private email on 2013-11-19, “In fact, this . . . is so clever that I’d like to see void_t

proposed for standardization.”

1

mailto:webrown.cpp@gmail.com

2 N3911: TransformationTrait Alias void_t

useful one, for it makes an arbitrary number of well-formed types into one completely predicable
type.

Consider the following example of void_t’s utility, a trait-like metafunction to determine
whether a type T has a type member named type:

1 template< class, class = void >

2 struct has_type_member : false_type { };

3 template< class T >

4 struct has_type_member<T, void_t<typename T::type>> : true_type { };

Compared to traditional code that computes such a result, this version seems considerably
simpler, and has no special cases (e.g., to avoid forming any pointer-to-reference type). The code
features exactly two cases, each straightforward:

a) When there is a type member named type, the specialization is well-formed (with void as its
second argument) and will be selected, producing a true_type result;

b) When there is no such type member, SFINAE will apply, the specialization will be nonviable,
and the primary template will be selected instead, yielding false_type.

Each case thus obtains the appropriate result.

As described in our cited papers, we have also applied void_t in the process of implementing
enhanced versions of the C++11 standard library components common_type and iterator_traits.

2.2 Implementation/specification

Our preferred implementation (and specification) of void_t is given by the following near-trivial
definition:

1 template< class... > using void_t = void;

Given a template argument list consisting of any number2 of well-formed types, the alias will thus
always name void. However, if even a single template argument is ill-formed, the entire alias
will itself be ill-formed. As demonstrated above and in our earlier papers, this becomes usefully
detectable, and hence exploitable, in any SFINAE context.

2.3 Implementation workaround

Alas, we have encountered implementation divergence (Clang vs. GCC) while working with the
above very simple definition. We (continue to) conjecture that this is because of CWG issue 1558:
“The treatment of unused arguments in an alias template specialization is not specified by the
current wording of 14.5.7 [temp.alias].”

The notes from the CWG issues list indicate that CWG has all along intended “to treat this
case as substitution failure,” a direction entirely consistent with our intended uses. Moreover,
proposed wording3 generated and approved during the recent Issaquah meeting follows the
indicated direction to resolve the issue, so it seems increasingly likely that we will in the not-too-
distant future be able to make portable use of our preferred simpler form.

Until such time, we employ the following workaround to ensure that our template’s argument
is always used:

1 template< class... > struct voider { using type = void; };

2 template< class... T0toN > using void_t = typename voider<T0toN...>::type;

2While we have not yet found a use for the degenerate case of a zero-length template argument list, we also see no
reason to forbid it.

3There is even a proposed Example that embeds our proposed void_t specification!

N3911: TransformationTrait Alias void_t 3

3 Proposed wording4

Append to [meta.type.synop] (20.10.2), above paragraph 1, as shown:

namespace std {

...

template <class...>

using void_t = void;

}

For the purposes of SG10, we recommend a feature-testing macro named either
__cpp_lib_void_t or __cpp_lib_has_void_t.

4 Addendum

After a preprint of this paper was made available on the Issaquah wiki, the above-proposed trait’s
name was questioned. This section will summarize the issues and proposals as recorded on the
lib-ext reflector so as to permit a full and fair ✭✭

✭
✭✭❤

❤
❤

❤❤bikeshed discussion at an appropriate future time.

• “Should void_t be named something else?

“It doesn’t follow the ‘old’ use of _t like size_t or nullptr_t. It doesn’t quite follow the new
use, like decay_t being decay<T>::type. ie void_t is not void<T,U,V>::type.

“Should it be named closer to it [sic] usage than its implementation? Of course, if it is named
based on usage (ie for SFINAE), and is later reused for something else, the name (or new
usage) may be seen as ‘incorrect’.” [Tony Van Eerd, c++std-lib-ext-681].

• “. . . I have no problem with void_t. It’s not too hard to understand that this is a type
transformation from any type to void.” [Ville Voutilainen, c++std-lib-ext-682].

• “. . . I think make_void_t, as_void_t, or to_void_t would be more descriptive. . . . ” [Pablo
Halperin, c++std-lib-ext-684].

• “By its very nature, the whole thing is confusing. . . . At the same time, it is very awesome.
That’s why I wonder about check_for_type<> or sfinae_check<> or . . . [sic] something
more about its usage. Because without seeing it in context, it is boggling. [Tony Van Eerd,
c++std-lib-ext-685].

• “The naive assumption would be typedef void void_t; but why would you want a typedef
for void?

“I think it might be a good idea not to lead people into this misconception and the obvious
questions that would arise from that.” [Bjarne Stroustrup, c++std-lib-ext-686].

• “I [suggest] void_type as a trait with a nested type, void_type_t as an alias for that nested
type.” [Ville Voutilainen, c++std-lib-ext-687].

• “. . . What about enable_if_types_exist_t[?] [Pablo Halperin, c++std-lib-ext-688].

• “voidify_t! :-)” [Pablo Halperin, c++std-lib-ext-690].

• “. . . enable_if_valid” [Howard Hinnant, c++std-lib-ext-691].

• “. . . enable_if_exist<>.” [Jeffrey Yasskin, c++std-lib-ext-692].

4All proposed additions and deletions are relative to the post-Chicago Working Draft [N3797]. Editorial notes are

displayed against a gray background.

4 N3911: TransformationTrait Alias void_t

• “ These are good ideas . . . , but I’d like to point out that Walter’s overall technique is highly
advanced (and elegant), and surprising even to experienced template metaprogrammers.
I don’t think that we need to worry about making the name extremely self-explanatory.
Something like always_void would describe what it does (immediately, not overall), without
introducing enable_if’s connotations (enable_if takes a bool and an optional type, so
what does enable_if_valid take?).

“Hmm. How about void_if_valid? That both says what it returns, and says what it’s trying
to do.” [Stephan T. Lavavej, c++std-lib-ext-693].

• “void_if_valid would satisfy me, particularly given the lack of the optional type.” [Jeffrey
Yasskin, c++std-lib-ext-694].

• “Actually, what it returns isn’t very important. In fact, I don’t want to lose the elegance of it,
but it should maybe return true_type, not void. More self-documenting. (There is a subtle
difference there — void can’t be instantiated, but I don’t think that makes a difference any
where?)

“So true_if_valid?

“Or just type_check<>.” [Tony Van Eerd, c++std-lib-ext-703].

• “Maybe: template<typename T, typename U = void> using enable_if_valid_t = U;”
[Richard Smith, c++std-lib-ext-708].

“It needs to be var-arg. T... [sic]” [Tony Van Eerd, c++std-lib-ext-709].

• “I’ve been using the first template for a while (the ::type version would be first_t then).
The idea is the same as void_t, except that the type you get is not void but the first of the
template parameters. Just thought I’d mention this version. On the other hand, we will
probably want a kth_t (nth_param_t?) to extract the k-th parameter from a pack, which
makes first_t unnecessary but may be a bit overkill for void_t.”

“Just to expand a bit on the uses of first_t:

“1) first_t<T...> extracts the first type.

“2) first_t<void,...> same as void_t. With partial specializations, and until we get
concepts, it is occasionally helpful to use it with something other than void (although
in practice I add an extra dummy parameter to classes I intend to partially specialize in
complicated ways, so I don’t often use first_t for that).

“3) first_t<T> same as std::identity<T>::type, makes it non-deducible.

“It is multi-purpose ;-) On the other hand, that makes it less convenient as a vocabulary
helper because its name can’t reflect all the uses (type_checker, nondeducible_t, etc).
[Marc Glisse, c++std-lib-ext-697, c++std-lib-ext-717].

Despite the above opinions, it remains our belief that the void_t name was selected “. . . following
a common convention of long standing, namely that _t often denotes a typedef name, as is the
case in size_t and ptrdiff_t, for example. By that reasoning, void_t seems consistent with
precedent.” [W. Brown, c++std-lib-ext-681].

5 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

6 Bibliography

[N3797] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/

SC22/WG21 document N3797 (post-Chicago mailing), 2013-10-13. http://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

N3911: TransformationTrait Alias void_t 5

[N3843] Walter E. Brown: “A SFINAE-Friendly std::common_type.” ISO/IEC JTC1/SC22/WG21 doc-

ument N3843 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2014/n3843.pdf.

[N3844] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits.” ISO/IEC JTC1/SC22/WG21 doc-

ument N3844 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2014/n3844.pdf.

[N3909] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits, v2.” ISO/IEC JTC1/SC22/WG21

document N3909 (post-Issaquah mailing), 2014-02-10. http://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2014/n3909.pdf. A revision of [N3844].

7 Document history

Version Date Changes

1 2014-02-23 • Published as N3911.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf

Proposing Standard Library Support for the C++ Detection Idiom

Document #: WG21 N4436

Date: 2015-04-09

Project: JTC1.22.32 Programming Language C++

Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 The void_t alias 2
3 The detection idiom 2
4 Validity of the idiom 3
5 A detection toolkit 4

6 Implementing the toolkit 5
7 Proposal 7
8 Acknowledgments 7
9 Bibliography 7
10 Document history 8

Abstract

This paper describes a coding pattern, termed the C++ detection idiom, powered by the void_t

metafunction recently accepted into the C++17 standard library. A fully-implemented toolkit of

interfaces to this idiom is then presented and proposed for future standardization.

Detection is, or ought to be, an exact science. . . .

— SIR ARTHUR IGNATIUS CONAN DOYLE

1 Introduction

At the 2014 Urbana meeting, WG21 adopted [N3911], thereby adding to the C++17 standard
library an alias template named void_t. Originating as an implementation detail in each of two
otherwise-independent earlier papers ([N3843] and [N3909]), it rapidly became clear that this
near-trivial void_t trait made possible a straightforward application of SFINAE in a pattern that
we term the C++ detection idiom. Further, recent evidence1 suggests that the use of this idiom
provides small but measurable improvements in compilation performance, when compared to
traditional approaches.

In experimenting with void_t in the context of this detection idiom, we have discovered a
means of encapsulating and parameterizing the idiom so as to simplify its application. Moreover,
we have found that such encapsulation forms the basis of a small toolkit that dramatically
simplifies implementation of a large class of metafunctions such as those in the standard library.

Copyright c© 2015 by Walter E. Brown. All rights reserved.
1 “I’ve run a few tests and using [void_t] in our _GLIBCXX_HAS_NESTED_TYPE macro reduces the front-end’s memory

footprint and compile-time compared to the old implementation. . . ” [Jonathan Wakely, libstdc++@gcc.gnu.org, 2014-
11-11].

1

mailto:webrown.cpp@gmail.com

2 N4436: Proposing Standard Library Support for the C++ Detection Idiom

We begin with a summary of the design, utility, and implementation of void_t, then describe
the detection idiom. Subsequent sections will describe a fully-implemented toolkit of interfaces to
the idiom, and will propose this toolkit for incorporation into a future TS or IS.

2 The void_t alias

The void_t alias template behaves as a metafunction that maps any given sequence of types
to a single type, namely to void. Although a trivial transformation, it has nonetheless proven
exceedingly useful, for it makes an arbitrary number of well-formed types into one completely
predicable type.

Our preferred implementation (and specification) of void_t is the following near-trivial defini-
tion:2

1 template< class... >

2 using

3 void_t = void;

Given a template argument list consisting of any number3 of well-formed types, the alias will thus
always name void. However, if even a single template argument is ill-formed, the entire alias will
itself be ill-formed.

As demonstrated in our earlier papers, this behavior becomes usefully detectable, and hence
exploitable, in any SFINAE context.

3 The detection idiom

As an idiomatic application of void_t, we previously presented the following trait-like metafunction
that determines whether a type T has a type member named T::type:

1 // primary template handles types that have no nested ::type member

2 template< class, class = void_t<> >

3 struct

4 has_type_member : false_type { };

6 // specialization recognizes types that do have a nested ::type member

7 template< class T >

8 struct

9 has_type_member<T, void_t<typename T::type>>

10 : true_type { };

The code features exactly two cases, each straightforward:

a) When there is a type member named type: the specialization is well-formed (albeit with a
funny spelling of void as its second argument) and will be selected,4 producing a true_type

result;

b) When there is no such type member: the specialization will be nonviable (due to SFINAE) and
the primary template will be selected instead, yielding false_type as the result.

2 This definition relies on the resolution of CWG issue 1558 (“The treatment of unused arguments in an alias template
specialization is not specified by the current wording of 14.5.7 [temp.alias]”) adopted at the Urbana meeting. An alternate
formulation of void_t is available for compilers whose semantics are inconsistent with this resolution; see [N3911].

3We have to date stilll not found a use for the degenerate case of a zero-length template argument list. However, we
also see no harm in it, especially as forbidding this case would have slightly complicated void_t’s design.

4See §4 for a discussion of this point.

N4436: Proposing Standard Library Support for the C++ Detection Idiom 3

Each case thus obtains the appropriate result. As we noted in our void_t paper, “Compared to
traditional code that computes such a result, this version seems considerably simpler, and has no
special cases (e.g., to avoid forming any pointer-to-reference type).”

We term this code pattern the C++ detection idiom because it is capable of recognizing the
validity of essentially any C++ expression. For example, the following transformation of the above
code (differing only in name and in the highlighted code) detects whether a type supports a
pre-increment operator:

1 // primary template handles types that do not support pre-increment

2 template< class, class = void_t<> >

3 struct

4 has_pre_increment_member : false_type { };

6 // specialization recognizes types that do support pre-increment

7 template< class T >

8 struct

9 has_pre_increment_member<T, void_t<decltype(++declval<T&>())>>

10 : true_type { };

Note particulary the role of std::declval in forming an archetypal expression to be detected,
and the use of decltype to inspect this expression in an unevaluated context.

With careful attention to the form of the archetypal expression, it is possible to detect whether
an operator is supported via a member function or via a non-member function. Consider the
following three expressions:

(a) &declval<T&>(),

(b) declval<T&>().operator&(), and

(c) operator&(declval<T&>()).

When used as the operand to decltype, we can detect, respectively,

(a) whether a type supports the address-of operator,

(b) whether a type supports that operator via a member function, and

(c) whether a type supports that operator via a free function.

Such granularity has proven useful. For example, we have been able to ensure that an instance
of a type can have its address taken. (Such a requirement is part of the Semiregular concept
described in [N3351].) Moreover, we can further guarantee via the detection idiom that the type
supports the operation without providing any operator& overload, thus ensuring that only the
built-in operator is available.

4 Validity of the idiom

In a core reflector thread (subject: “Class SFINAE?”), John Spicer commented on the coding
technique underlying the detection idiom. He wrote, “This is not overloading of class declarations,
it is just partial specialization. The question is whether SFINAE applies . . . in [the] deduction
process used in partial specialization. I believe it does in all implementations, and is important
functionality” [c++std-core-26537, 2014-12-08].

However, later in that same thread, Richard Smith observed “that we’re missing the core
wording for template argument deduction for partial specializations. 14.5.5.1/2 says ‘go look
in 14.8.2’, and then 14.8.2 doesn’t say what to do; the particular issue here is that the 14.8.2
words that support SFINAE only talk about a function type and its template parameters, but we
more generally seem to be missing a subclause of 14.8.2 that describes this form of deduction for

4 N4436: Proposing Standard Library Support for the C++ Detection Idiom

matching partial specializations against a template argument list” [c++std-core-26539, 2014-12-
08].

It is our understanding that Smith’s observation re missing wording will form the basis of a
new CWG issue. Once formally resolved, there should be no doubt as to the idiom’s validity. Until
then, we rely on Spicer’s comment as sufficient validation for our usage.

5 A detection toolkit

Since we first devised void_t and recognized the detection idiom, we have been quite extensively
experimenting with it. For the most part, we have been reimplementing a large cross-section of the
standard library (including, for example, all of headers <type_traits>, <cmath>, <iterator>,
<string>, <algorithm>, and <random>). We have observed that the use of the detection idiom
has wide-ranging applicability leading to significant reduction in code complexity and attendant
increase in code comprehensibility.

Initially, we performed manual transformations of the archetypal expressions in the idiom.
This led to significant code duplication, as the rest of the idiom’s code (other than the resulting
trait’s name) is boilerplate. We subsequently discovered a means of encapsulating the detection
idiom as a self-contained metafunction that is parameterized on the archetypal expression via a
techinique that, in this context, we refer to as a metafunction callback.

Our initial version was formulated as follows:

1 // primary template handles all types not supporting the operation:

2 template< class, template<class> class, class = void_t< > >

3 struct

4 detect : false_type { };

6 // specialization recognizes/validates only types supporting the archetype:

7 template< class T, template<class> class Op >

8 struct

9 detect< T, Op, void_t<Op<T>> > : true_type { };

To use this detect metafunction, we supply it with another metafunction (i.e., a meta-callback)
that fills the role of the archetypal expression. For example, here is an implementation of the
is_assignable type trait:

1 // archetypal expression for conversion operation

2 template< class L, class R >

3 using

4 assign_t = decltype(STD::declval<L>() = STD::declval<R>())

6 // trait corresponding to that archetype

7 template< class L, class R >

8 using

9 is_assignable = detect<void, assign_t, L, R>;

Such application of the detect metafunction dramatically decreased the amount of boilerplate
code to be written in adapting the detection idiom to new circumstances. Although the resulting
code was significantly more comprehensible than the original, we disliked the above detect

interface because the void argument in the metafunction call is an implementation detail that
shouldn’t leak out to client code. Accordingly, we designed a different interface, shown below in
§6.2 under the name is_detected. In addition, we found use cases for three variations on the
basic theme:

N4436: Proposing Standard Library Support for the C++ Detection Idiom 5

1. The first variation is to seek a specified nested type, and yield an alias to that type if it is
detected, and to produce an alias to a specified default type if the desired nested type is not
detected. This variation is useful in implementing such specifications as “Alloc::pointer if
such a type exists; otherwise, value_type*” [allocator.traits.types]/1. We name this variant
detected_or.

2. The second variation is to detect an archetype iff it also produced a designated result type.
This is useful to ensure that only canonical operations are recognized. For example, the
current specification of the is_assignable trait is silent with respect to the resulting type,
although a canonical assignment operator must result in a reference type. We name this
variant is_detected_exact.

3. The third variation is to detect an archetype iff it also produced a result type convertible to a
specified type. This is useful in recognizing, for example, relational operations (whose result
types must be convertible to bool). We name this last variant is_detected_convertible.

It is our experience that these four interfaces to the detection idiom satisfy the overwhelming
majority of our applications of the idiom. We will therefore consider these as the components
of our detection idiom toolkit. The next section will first present a common infrastructure that
supports the entire toolkit, and will then provide a complete implementation of all proposed
variations.

6 Implementing the toolkit

6.1 The detector infrastructure

We have devised the following detector template as a common infrastructure to support the
four desired components of our detection idiom toolkit: (a) is_detected, (b) detected_or,
(c) is_detected_exact, and (d) is_detected_convertible.

1 // primary template handles all types not supporting the archetypal Op

2 template< class Default

3 , class // always void; supplied externally

4 , template<class...> class Op

5 , class... Args

6 >

7 struct

8 detector

9 {

10 constexpr static auto value = false;

11 using type = Default;

12 };

14 // specialization recognizes and handles only types supporting Op

15 template< class Default

16 , template<class...> class Op

17 , class... Args

18 >

19 struct

20 detector<Default, void_t<Op<Args...>>, Op, Args...>

21 {

22 constexpr static auto value = true;

23 using type = Op<Args...>;

24 };

Now we can implement each of our four desired interfaces as aliases to this infrastructure.

6 N4436: Proposing Standard Library Support for the C++ Detection Idiom

6.2 The is_detected interface

First we have is_detected and its associates is_detected_v and detected_t:5

1 template< template<class...> class Op, class... Args >

2 using

3 is_detected = detector<void, void, Op, Args...>;

5 template< template<class...> class Op, class... Args >

6 constexpr bool

7 is_detected_v = is_detected<Op, Args...>::value;

9 template< template<class...> class Op, class... Args >

10 using

11 detected_t = typename is_detected<Op, Args...>::type;

6.3 The detected_or interface

Next we show detected_or and the associated detected_or_t:

1 template< class Default, template<class...> class Op, class... Args >

2 using

3 detected_or = detector<Default, void, Op, Args...>;

5 template< class Default, template<class...> class Op, class... Args >

6 using

7 detected_or_t = typename detected_or<Default, Op, Args...>::type;

6.4 The is_detected_exact interface

Next are is_detected_exact and associate is_detected_exact_v:

1 template< class Expected, template<class...> class Op, class... Args >

2 using

3 is_detected_exact = is_same< Expected, detected_t<Op, Args...> >;

5 template< class Expected, template<class...> class Op, class... Args >

6 constexpr bool

7 is_detected_exact_v = is_detected_exact< Expected, Op, Args...>::value;

6.5 The is_detected_convertible interface

Finally, we have is_detected_convertible and the associated is_detected_convertible_v:

1 template< class To, template<class...> class Op, class... Args >

2 using

3 is_detected_convertible = is_convertible< detected_t<Op, Args...>, To >;

5 template< class To, template<class...> class Op, class... Args >

6 constexpr bool

7 is_detected_convertible_v

8 = is_detected_convertible<To, Op, Args...>::value

6.6 The nonesuch utility type

We also recommend the following nearly-useless type, nonesuch6:

5But see also §6.6 for a recommended tweak to this definition.
6This type was inspired by, and patterned after, the internal type __nat (which we believe is an acronym for “not a

type”) found in libc++.

N4436: Proposing Standard Library Support for the C++ Detection Idiom 7

1 struct

2 nonesuch

3 {

4 nonesuch() = delete;

5 ~nonesuch() = delete;

6 nonesuch(nonesuch const&) = delete;

7 void

8 operator = (nonesuch const&) = delete;

9 };

Given this type, we have found it expedient to make one small adjustment in our earlier definition of
detected_or_t: We prefer to specify nonesuch as the (default) result when the provided archetype
is not detected. This change avoids the possibility of a spurious result in is_detected_exact (in
the case where the expected result type is void but the archetypal operation is not detected: we
ought not yield void in such a case).

7 Proposal

Using the above-described interfaces to the detection idiom, we have produced a library of concept-
like functions consistent with those described in Section 3 of [N3351]. We therefore believe that
the detection toolkit detailed in §6 above is a library solution that is fully compatibile with the
semantics of function concepts and variable concepts as set forth in Clause [dcl.spec.concept] of
[N4377].

We respectfully recommend that the Concepts Study Group, the Library Evolution Working
Group, and the Evolution Working Group jointly study the relationship of the proposed toolkit to
the Concepts Lite proposal [N4377] and come to a unified recommendation as to these proposals’
future direction. Until then, we propose this detection toolkit for WG21 standardization.
Upon LEWG approval of this proposal, we will provide LWG with proposed wording that specifies
the described interface and behavior.

8 Acknowledgments

Many thanks, for their thoughtful comments, to the readers of early drafts of this paper.

9 Bibliography

[N3351] B. Stroustrup and A. Sutton (eds.): “A Concept Design for the STL.” ISO/IEC JTC1/SC22/

WG21 document N3351 (post-Issaquah mailing), 2012-01-13. http://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2012/n3351.pdf.

[N3843] Walter E. Brown: “A SFINAE-Friendly std::common_type.” ISO/IEC JTC1/SC22/WG21 doc-

ument N3843 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2014/n3843.pdf.

[N3844] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits.” ISO/IEC JTC1/SC22/WG21 doc-

ument N3844 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2014/n3844.pdf.

[N3909] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits, v2.” ISO/IEC JTC1/SC22/WG21

document N3909 (post-Issaquah mailing), 2014-02-10. http://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2014/n3909.pdf. A revision of [N3844].

[N3911] Walter E. Brown: “TransformationTrait Alias void_t.” ISO/IEC JTC1/SC22/WG21 document

N3911 (post-Issaquah mailing), 2014-02-23. http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2014/n3911.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf

8 N4436: Proposing Standard Library Support for the C++ Detection Idiom

[N4377] Andrew Sutton: “Programming Languages—C++ Extensions for Concepts.” ISO/IEC JTC1/SC22/

WG21 document N4377 (mid-Urbana/Lexena mailing), 2015-02-09. http://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2015/n4377.pdf.

10 Document history

Version Date Changes

1 2015-04-09 • Published as N4436.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	3 Proposed wording
	4 Addendum
	5 Acknowledgments
	6 Bibliography
	7 Document history
	Title
	Contents
	Abstract
	1 Introduction
	2 The void_t alias
	3 The detection idiom
	4 Validity of the idiom
	5 A detection toolkit
	6 Implementing the toolkit
	7 Proposal
	8 Acknowledgments
	9 Bibliography
	10 Document history

